The threshold-two contact process on a random *r*-regular graph has a first order phase transition

Shirshendu Chatterjee

Cornell University

North-east Probability Seminar

October 17, 2013

S. Chatterjee (Cornell)

Threshold-two contact process on random reg

Random graph G_n

Construct random graph G_n on the vertex set V_n as follows.

- Assign r "half edges" to each of the vertices.
- Pair the half edges at random (*rn* must be even).
- Let \mathbb{P} denote the distribution of G_n .
- Condition on the event E_n that the graph is simple (no self loops or multiple edges).
- $\mathbb{P}(E_n)$ is bounded away from 0, and hence for large enough n,

 $\text{if } \tilde{\mathbb{P}}:=\mathbb{P}(\cdot|E_n), \text{ then } \tilde{\mathbb{P}}(\cdot) \leq c\mathbb{P}(\cdot) \text{ for some constant } c=c(r)>0.$

• Choose G_n according to the distribution $\tilde{\mathbb{P}}$ on simple graphs.

(人間) トイヨト イヨト

Threshold-two contact process

• $x \sim y$ means that x is a neighbor of y, and

$$\mathcal{N}_{y} := \{ x \in V_{n} : x \sim y \}.$$

- The state of the process at time t = 0, 1, ... is ξt ⊆ Vn, the set of occupied vertices.
- The distribution $P_{G_{n,p}}$ of ξ_t with parameter p conditioned on G_n is given by

$$\begin{split} & \mathcal{P}_{G_{n,p}}\left(x \in \xi_{t+1} \mid |\mathcal{N}_x \cap \xi_t| \geq 2\right) = p \text{ and} \\ & \mathcal{P}_{G_{n,p}}\left(x \in \xi_{t+1} \mid |\mathcal{N}_x \cap \xi_t| < 2\right) = 0, \end{split}$$

where the decisions for different vertices at time t + 1 are taken independently.

• Let $\mathbf{P}_{\rho}(\cdot) := \tilde{\mathbb{E}} P_{G_n,\rho}(\cdot)$ be the unconditional distribution of ξ_t .

The critical value p_c

- Let ξ_t^1 start from all-one configuration.
- Define the boundary p_c between convergence to the all-zero configuration within time $C(p) \log n$, and exponentially prolonged persistence as

$$p_c := \inf \left\{ p \in [0,1] : \lim_{n \to \infty} \mathbf{P}_p \left(\inf_{t \le \exp(k(p)n)} rac{|\xi_t^1|}{n} > u(p)
ight) = 1 ext{ for some } h
ight\}$$

Theorem

If $r \ge 4$ and $\eta \in (0, 1/4)$, then there is an $\epsilon_1 = \epsilon_1(\eta) \in (0, 1)$ such that for p sufficiently close to 1, and for some positive constants C_1 and $c_1(\eta, p)$,

$$\mathbf{P}_p\left(\inf_{t\leq \exp(c_1(\eta,p)n)}\frac{|\xi_t^1|}{n}<1-\epsilon_1\right)\leq C_1\exp(-c_1(\eta,p)n).$$

Remarks: So $p_c < 1$.

Behavior of ξ_t^A starting from a small occupied set A

Let ξ_t^A starts from $\xi_0^A = A$.

Theorem

There is a decreasing continuous function $\epsilon_2 : (0,1) \mapsto (0,1)$ and a collection \mathcal{G} of simple r-regular graphs on n vertices such that for any $p \in (0,1)$, $C_0(p) := 2/\log(2/(1+p))$, and any subset $A \subset V_n$ with $|A| \leq \epsilon_2(p)n$,

•
$$\sup_{G_n \in \mathcal{G}} P_{G_n, p} \left(\xi^A_{\lceil C_0(p) \log n \rceil} \neq \emptyset \right) = o(1),$$

• $\tilde{\mathbb{P}}(\mathcal{G}^c) = o(1).$

Hence $\lim_{n\to\infty} \mathbf{P}_p\left(\xi^{\mathcal{A}}_{\lceil C_0(p)\log n\rceil}\neq\emptyset\right)=0.$

Remarks: (i) $p_c \in (0, 1)$. (ii) The density of occupied vertices does not stay in $(0, \epsilon_2)$ for long time.

Quasi-stationary density

• For $p > p_c$, let

$$\rho_n := \frac{1}{n} \left| \xi^1_{\lceil \exp(n^{1/2}) \rceil} \right|.$$

 ρ_n is the quasi-stationary density of occupied vertices.

- From previous theorem, $\mathbf{P}_p(\rho_n \geq \epsilon_2(p)) = 1 o(1)$.
- Also using monotonicity, $P_{G_n,p}, p \in [0,1]$ are stochastically ordered, i.e.

for
$$p_1 < p_2, P_{G_n,p_1}(B) \le P_{G_n,p_2}(B)$$
 for any inctrasing event B .

Theorem (C. 2010)

Let $\rho := \epsilon_2(p_c)$, where $\epsilon_2(\cdot)$ is as in previous theorem. Then $\rho > 0$. For any $p > p_c$ and $\delta > 0$,

$$\lim_{n\to\infty}\mathbf{P}_p(\rho_n>\rho-\delta)=1.$$